Abstract

Laccases have low redox potentials limiting their environmental and industrial applications. The use of laccase mediators has proven to be an effective approach for overcoming the low redox potentials. However, knowledge about the role played by the mediator cocktails in such a laccase-mediator system (LMS) is scarce. Here, we assembled different dual-agent mediator cocktails containing 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), vanillin, and/or acetovanillone, and compared their mediating capabilities with those of each individual mediator alone in oxidation of pentachlorophenol (PCP) by Ganoderma lucidum laccase. Cocktails containing ABTS and either vanillin or acetovanillone strongly promoted PCP removal compared to the use of each mediator alone. The removal enhancement was correlated with mediator molar ratios of the cocktails and incubation times. Analysis of the kinetic constants for each mediator compound showed that G. lucidum laccase was very prone to react with ABTS rather than vanillin and acetovanillone in the cocktails. Moreover, the presence of the ABTS radical (ABTS+*) and vanillin or acetovanillone significantly enhanced PCP removal concomitant with electron transfer from vanillin or acetovanillone to ABTS+*. These results strongly suggest that vanillin and acetovanillone mediate the reaction between ABTS and PCP via multiple sequential electron transfers among laccase and its mediators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.