Abstract
Photon and neutron attenuation properties of La2O3 based Li2O-SiO2-La2O3 glass system have been evaluated through MCNPX (2.6.0) Monte Carlo code at some photon energies of 0.256–1.33 MeV. In order to control the accuracy of the data, the estimated MCNPX of mass attenuation coefficients have been compared to those of WinXCOM software. The half value layer (HVL), tenth value layer (TVL) and mean free path (MFP) values of the selected glass system exhibited that the shielding performance of the gamma photons is related to the density of glass, thus, the inclusion of TeO2 to Li2O-SiO2 improves the capacity of the glass system to attenuate more photons. In addition, the effective removal cross-section (ΣR) calculations have been done. Further, Mass sopping power (MSP) and Projected range (PR) are calculated for proton particles (H1) and alpha particles (He+2). It may be deduced that La4 glass among the studied samples may be kept in view as a superior glass in terms of shielding for photon and neutron while La0 glass can be considered as a best shielding material against to alpha and proton particles. The results of this study may be useful for shielding optimization of medical and industrial facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.