Abstract

Backgroundγδ T cells are important for both protective immunity and immunopathogenesis during malaria infection. However, the immunological processes determining beneficial or detrimental effects on disease outcome remain elusive. The aim of this study was to examine expression and regulatory effect of the inhibitory receptor T-cell immunoglobulin domain and mucin domain 3 (TIM3) on γδ T cells. While TIM3 expression and function on conventional αβ T cells have been clearly defined, the equivalent characterization on γδ T cells and associations with disease outcomes is limited. This study investigated the functional capacity of TIM3+ γδ T cells and the underlying mechanisms contributing to TIM3 upregulation and established an association with malaria disease outcomes.MethodsWe analyzed TIM3 expression on γδ T cells in 132 children aged 5–10 years living in malaria endemic areas of Papua New Guinea. TIM3 upregulation and effector functions of TIM3+ γδ T cells were assessed following in vitro stimulation with parasite-infected erythrocytes, phosphoantigen and/or cytokines. Associations between the proportion of TIM3-expressing cells and the molecular force of infection were tested using negative binomial regression and in a Cox proportional hazards model for time to first clinical episode. Multivariable analyses to determine the association of TIM3 and IL-18 levels were conducted using general linear models. Malaria infection mouse models were utilized to experimentally investigate the relationship between repeated exposure and TIM3 upregulation.ResultsThis study demonstrates that even in the absence of an active malaria infection, children of malaria endemic areas have an atypical population of TIM3-expressing γδ T cells (mean frequency TIM3+ of total γδ T cells 15.2% ± 12). Crucial factors required for γδ T cell TIM3 upregulation include IL-12/IL-18, and plasma IL-18 was associated with TIM3 expression (P = 0.002). Additionally, we show a relationship between TIM3 expression and infection with distinct parasite clones during repeated exposure. TIM3+ γδ T cells were functionally impaired and were associated with asymptomatic malaria infection (hazard ratio 0.54, P = 0.032).ConclusionsCollectively our data demonstrate a novel role for IL-12/IL-18 in shaping the innate immune response and provide fundamental insight into aspects of γδ T cell immunoregulation. Furthermore, we show that TIM3 represents an important γδ T cell regulatory component involved in minimizing malaria symptoms.

Highlights

  • Immunoregulation is an essential part of the immune response and ensures that a comprehensive and protective response is elicited, but with limited damage to the host

  • Little is known about T-cell immunoglobulin domain and mucin domain 3 (TIM3) expression on γδ T cells and whether Plasmodium infection is associated with γδ T cell TIM3 expression

  • We found that the frequency of TIM3+ γδ T cells was significantly increased in both liver and spleen immediately following resolution of acute infection compared to naive mice

Read more

Summary

Introduction

Immunoregulation is an essential part of the immune response and ensures that a comprehensive and protective response is elicited, but with limited damage to the host. Immunoregulation can be achieved by check-point proteins that either enhance or inhibit cell reactivity [1]. Inappropriate expression of these proteins can have detrimental consequences for immune responses to infection and affect pathogenesis. The expression of immunoregulatory proteins on conventional T cells has been recently shown in both malaria rodent infection models and in malaria-infected individuals, where inhibitory therapies of immunoregulatory proteins resulted in enhanced parasite clearance [9,10,11,12,13]. The effect of continuous malaria exposure on immunoregulation among the innate cell compartment remains a critically under-investigated aspect of malaria immunology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call