Abstract

A remarkable synergetic effect between the graphene oxide (GO) layers and multiwalled carbon nanotubes (MWCNTs) in improving friction and wear on sliding diamond-like carbon (DLC) surfaces under high vacuum condition (10(-5) Pa) and low or high applied load is demonstrated. In tests with sliding DLC surfaces, ionic liquid solution that contains small amounts of GO and MWCNTs exhibited the lowest specific friction coefficient and wear rate under all of the sliding conditions. Optical microscope images of the wear scar of a steel ball showed that GO/MWCNT composites exhibited higher antiwear capability than individual MWCNTs and GO did. Transmission electron microscopy images of nanoadditives after friction testing showed that MWCNTs support the GO layers like pillars and prevent assembly between the GO layers. Their synergistic effect considerably enhances IL-GO/MWCNT composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call