Abstract
Tissue-type plasminogen activator (tPA) is secreted by rat granulosa cells m response to treatment with activators of protein kinase A (follitropin, FSH), protein kinase C (gonadotropin-releasing hormone, GnRH) and tyrosine kinase (epidermal growth factor, EGF). Because steroid hormones have been shown to enhance the gonadotropin stimulation of ovarian differentiation, we investigated the effects of steroid hormones, alone or together with various kinase activators, on tPA activities and mRNA levels in cultured rat granulosa cells. Treatment of cells with dexamethasone (DEX; a glucocorticoid agonist) or R1881 (an androgen agonist) caused an increase in tPA secretion and mRNA levels. In addition, the stimulation of tPA activity and mRNA levels by FSH (50 ng/ml) was synergistically enhanced by cotreatment with DEX or R1881 in a time-dependent manner with 2.8- and 1.6-fold increase at 9 h after incubation as compared to cells treated with FSH alone. In contrast, treatment with diethylstilbestrol had no effect on tPA levels. Furthermore, tPA activity and mRNA levels induced by GnRH and EGF were also increased by cotreatment with DEX or R1881 as compared with cells treated with GnRH or EGF alone. Likewise, the stimulation of tPA mRNA levels by dibutyryl cAMP, a protein kinase A activator, and phorbol myristate acetate (PMA), a protein kinase C activator, was enhanced by cotreatment with DEX or R1881. These results demonstrate that glucocorticoid and androgen enhance tPA secretion and mRNA levels stimulated by FSH, GnRH and EGF in granulosa cells. The rat granulosa cells provide a useful model for studying the mechanism of regulation of tPA gene expression by steroid hormones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.