Abstract

Bacterial infections and poor vascularization delay wound healing, thus necessitating alternative strategies for functional wound dressings. Zinc oxide (ZnO) has been shown to exert a potent antibacterial effect against bacterial species. Similarly, Glucagon-like peptide-1 (GLP-1) analogue liraglutide (LG) has been shown to promote vascularization and improve wound healing. The objective of this research was to investigate the synergistic effect of ZnO nanoparticles (ZnO-NPs) and LG to simultaneously induce antibacterial, hemostatic, and vascularization effects for infected wound healing. Electrospun poly (l-lactide-co-glycolide)/gelatin (PLGA/Gel) membranes containing ZnO-NPs and LG displayed good biocompatibility and hemostatic ability. Both, ZnO-NPs and LG exhibited synergistic antibacterial effect against Staphylococcus aureus and Escherichia coli as well as improved the migration and tubule-like network formation of human umbilical vein endothelial cells (HUVECs) invitro. Once evaluated in a bacterial-infected wound model in rats, the membranes loaded with ZnO-NPs and LG effectively promoted wound healing causing significant reduction in wound area and scar-like tissue formation. Therefore, ZnO-NPs/LG synergism may offer an invaluable solution for the treatment of poorly healing infected wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.