Abstract
With power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long-term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood. It is shown that elevated device temperature coupled with excess charge carriers due to constant illumination is the dominant force in the rapid degradation of encapsulated perovskite solar cells under illumination. Cooling the device to 20 °C and operating at the maximum power point improves the stability of CH3 NH3 PbI3 solar cells over 100× compared to operation under open circuit conditions at 60 °C. Light-induced strain originating from photothermal-induced expansion is also observed in CH3 NH3 PbI3 , which excludes other light-induced-strain mechanisms. However, strain and electric field do not appear to play any role in the initial rapid degradation of CH3 NH3 PbI3 solar cells under illumination. It is revealed that the formation of additional recombination centers in PSCs facilitated by elevated temperature and excess charge carriers ultimately results in rapid light-induced degradation. Guidance on the best methods for measuring the stability of PSCs is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.