Abstract

Finger-type expansion joints (FJs) have been extensively used in highway bridges and are exposed to the repeated impacts of traffic loading and corrosive environments. In this study, the corrosion and cracking behaviors of FJs serving in bridges for more than 25 years were investigated. The microstructure, electrochemical properties, and dynamic response of the FJs were investigated to analyze the fracture mechanism. The results showed that the crack-induced mechanisms of the two main failure modes were different because the synergistic effect of corrosion with residual stress changed depending on the degree of corrosion. First, considerable residual tensile stress, which enhanced the effective stress range, was the critical cause of fatigue crack initiation in the less corroded heat-affected zone (HAZ). Second, the dominant mechanism for cracking was the applied stress to the severely eroded FJ bottom, which was accelerated by galvanic corrosion. Crack-inducing factors included a combination of stress concentration and dynamic springback behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call