Abstract

Thermo-oxidative stability of HDPE/EVA blends can be considerably increased by combination of a high-molecular weight phenolic antioxidant and zinc stearate. In this work, the post-irradiation thermal stability of HDPE/EVA blends has been studied. High-density polyethylene and its blends with ethylene-vinylacetate copolymer in both pure form and mixed with Irganox 1010 and zinc stearate were exposed to electron beam radiation at doses between 80 and 150 kGy, at room temperature, in air. In order to evaluate the thermal stability of the samples, post-irradiation heat treatments were done in both hot water bath at 95 °C and in an oven at 140 °C. The mechanical properties and changes in the chemical structure were determined during thermal aging in hot water and oven. The gel content was enhanced by increasing EVA concentration in all applied doses. The stabilized blends have lower gel content than the unstabilized samples. From the results of heat aging treatments it was observed that the thermal stability of the unstabilized blend samples was lower than HDPE. Thermal stability of the samples has been improved by incorporation of Irganox 1010 and zinc stearate. Formation of hydroxyl group was insignificant for stabilized samples during heat aging in both conditions. Also, the changes in the value of oxidation induction time (OIT) for the stabilized samples were negligible after prolonged immersion in hot water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.