Abstract

The aim of this study was to investigate the synergistic effect of cold atmospheric plasma (CAP) treatment and RGD peptide coating for enhancing cellular attachment and proliferation over titanium (Ti) surfaces. The surface structure of CAP-treated and RGD peptide-coated Ti discs were characterized by contact angle goniometer and atomic force microscopy. The effect of such surface modification on human bone marrow derived mesenchymal stem cells (hMSCs) adhesion and proliferation was assessed by cell proliferation and DNA content assays. Besides, hMSCs' adhesion and morphology on surface modified Ti discs were observed via fluorescent and scanning electron microscopy. RGD peptide coating following CAP treatment significantly enhanced cellular adhesion and proliferation among untreated, CAP-treated and RGD peptide-coated Ti discs. The treatment of Ti surfaces with CAP may contribute to improved RGD peptide coating, which enables increased cellular integrations with the Ti surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call