Abstract

Heterostructures show excellent performance in energy and environment fields due to the unique interface structure and synergistic effect of multi-components. Here, we introduce a stepwise method to prepare multi-element Co3O4@C@MnO2 heterostructures on nickel foam as binder-free supercapacitor electrode material, where crystalline Co3O4 acts as intimal “core” and wrinkled ultrathin MnO2 nanosheets as the outer “shell”. In three-electrode mode, Co3O4@C@MnO2 shows excellent electrochemical performance with a high cyclic specific capacitance of 1335.3 F g−1 at a current density of 20 A g−1. Furthermore, the asymmetry supercapacitor device assembled with Co3O4@C@MnO2 heterostructures and active carbon exhibits high specific capacity (126.6 F g−1 at a current density of 0.5 A g−1) and long life (about 61 F g−1 at a relatively high current of 20 A g−1 after 40,000 cycles). Compared with Co3O4@MnO2 or C@MnO2, the improved performance of Co3O4@C@MnO2 heterostructures is proposed to be attributed to the synergistic effect in multi-components. Remarkably, the introduction of C between Co3O4 and MnO2 could promote the electron transfer, reduce the impedance and thus improve the electrochemical performance of the heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call