Abstract

As nitrate contamination causes serious environmental problems, it is necessary to develop stable and efficient electrocatalysts for efficient electrochemical nitrate reduction reaction (ENRR). Here, a nonprecious Co3O4/carbon felt (CF) electrode with a 3D structure was prepared by integrating electrodeposition with calcination methods. This 3D structured Co3O4/CF electrode exhibits a high-rate constant of 1.18 × 10-4 s-1 cm-2 for the ENRR, surpassing other Co3O4 electrodes in previous literature. Moreover, it also has an excellent stability with a decrease of 6.4% after 10 cycles. Density functional theory calculations, electron spin resonance analysis, and cyclic voltammetry were performed to study the mechanism of the ENRR on the Co3O4/CF electrode, proving that atomic H* (indirect pathway) plays a prominent role in NO3- reduction and clarifying the synergistic effect of Co(III) and Co(II) in the Co(II)-Co(III)-Co(II) redox cycle for the ENRR: Co(III) prefers the adsorption of NO3- and Co(II) favors the production of H*. Based on this synergy, a relatively large amounts of Co(II) on the surface of the Co3O4/CF electrode (1.3 Co(II)/Co(III) ratio) was maintained by controlling the temperature of calcination to 200 °C with a lower energy barrier of H* formation of 0.46 eV than other ratios, which is beneficial for forming H* and enhancing the performance of the ENRR. Thus, this study suggests that building 3D structure and optimizing Co(II)/Co(III) ratio are important for designing efficient Co3O4 electrocatalyst for ENRR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.