Abstract

To estimate the synergistic emission reduction effect resulting from carbon emissions trading scheme (ETS) pilots launched in 2013, this study estimated the synergistic emission reduction relationship between carbon dioxide (CO2) and atmospheric pollutants, consisting of sulfur dioxide (SO2), nitrogen oxides (NOX), dust pollutants (Dust) and particulate matter 2.5 (PM2.5). Using the extended logarithmic mean Divisia index (LMDI) method and the IPAT equation, the synergistic emission reduction effect was decomposed into direct and indirect categories driven by energy efficiency, economic development and industrial structure. Moreover, the synergistic emission reduction effect of ETS pilots was quantified with the difference-in-differences method (DID) and propensity score matching difference-in-differences method (PSM-DID). The results show that, from 2013 to 2016, CO2 and atmospheric pollutants achieved emission reduction synergistically through ETS, among which the synergistic emission reduction effect between CO2 and SO2 was most significant. Compared with the direct category, the indirect category accounted for smaller proportion of the synergistic emission reduction effect. The combined action of energy efficiency and industrial structure has a potential positive influence on synergistic emission reduction effect of ETS. Consequently, this suggests that the government needs to develop the domestic carbon market further, improve energy efficiency and optimize industrial structure to promote synergistic emission reduction.

Highlights

  • The externality cost of carbon emission can be internalized through emission trading schemes (ETSs), which contribute to carbon emission reduction

  • The impact on atmospheric pollutants driven by ETS is mainly manifested as SO2 emission reduction currently

  • The synergistic emission reduction effect of CO2 and atmospheric pollutants driven by ETS mainly manifested as the direct synergy of SO2 and CO2, as well as the potential effects on efficiency synergy and industry synergy

Read more

Summary

Introduction

The externality cost of carbon emission can be internalized through emission trading schemes (ETSs), which contribute to carbon emission reduction. As the country producing the most carbon emissions, China promised a 60–65% reduction in carbon dioxide emissions per unit gross domestic product (GDP) by 2030 compared with 2005 at the Copenhagen Climate Change Conference. To achieve these emission reduction goals, China actively launched the ETS pilot program, which lasted for 3 years, from 2013 to 2015, consisting of Beijing, Tianjin, Shanghai, Guangdong, Hubei, Chongqing and Shenzhen. The ETS was promoted widely, and the nationwide carbon trading market was gradually established by 2017. A synergistic control method driven by carbon emission reduction has gradually attracted much attention. The 13th Five-Year Plan of Work on Controlling

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call