Abstract

Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth's atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)(CH3NH2)(H2SO4) m(H2O) n ( m = 1-3, n = 0-4) clusters at the PW91PW91/6-311++G(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)(CH3NH2)(H2SO4) m(H2O) n ( n = 0-4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)(CH3NH2)(H2SO4)2 clusters could reach that of total hydrated (NH3)(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)(CH3NH2)(H2SO4)(H2O), (NH3)(CH3NH2)(H2SO4)2 and (NH3)(CH3NH2)(H2SO4)3 clusters, three relative abundant clusters in (NH3)(CH3NH2)(H2SO4) m(H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.