Abstract

To study the effect of oxymatrine-baicalin combination (OB) against HBV replication in 2.2.15 cells and alpha smooth muscle actin (alpha SMA) expression, type I, collagen synthesis in HSC-T6 cells. The 2.2.15 cells and HSC-T6 cells were cultured and treated respectively. HBsAg and HBeAg in the culture supernatants were detected by ELISA and HBV DNA levels were determined by fluorescence quantitative PCR. Total RNA was extracted from HSC-T6 cells and reverse transcribed into cDNA. The cDNAs were amplified by PCR and the quantities were expressed in proportion to beta actin. The total cellular proteins extracted from HSC-T6 cells were separated by electrophoresis. Resolved proteins were electrophoretically transferred to nitrocellulose membrane. Protein bands were revealed and the quantities were corrected by beta actin. In the 2.2.15 cell culture system, the inhibitory rate against secretion of HBsAg and HBeAg in the OB group was significantly stronger than that in the oxymatrine group (HBsAg, P = 0.043; HBeAg, P = 0.026; respectively); HBV DNA level in the OB group was significantly lower than that in the oxymatrine group (P = 0.041). In HSC-T6 cells the mRNA and protein expression levels of alpha SMA in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P = 0.013; protein, P = 0.042; respectively); The mRNA and protein expression levels of type I collagen in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P < 0.01; protein, P < 0.01; respectively). OB combination has a better effect against HBV replication in 2.2.15 cells and is more effective against alpha SMA expression and type I collagen synthesis in HSC-T6 cells than oxymatrine in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call