Abstract

Heteroatom doping is a promising approach to improve the properties of carbon materials for customized applications. Herein, a series of Cu catalysts supported on boron-doped carbon nanotubes (Cu/xB-CNTs) were prepared for the hydrogenation of dimethyl oxalate (DMO) to ethanol. The structure and chemical properties of boron-doped catalysts were characterized by XRD, TEM, N2 O pulse adsorption, CO chemisorption, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption, which revealed that doping boron into CNT supports improved the Cu dispersion, strengthened the interaction of Cu species with the CNT support, introduced more surface acid sites, and increased the surface area of Cu0 and especially Cu+ sites. Consequently, the catalytic activity and stability of the catalysts were greatly enhanced by boron doping. 100 % DMO conversion and 78.1 % ethanol selectivity could be achieved over the Cu/1B-CNTs catalyst, the ethanol selectivity of which was almost 1.7 times higher than that of the catalyst without boron doping. These results suggest that doping CNTs with boron is an efficient approach to improve the catalytic performance of CNT-based catalysts for hydrogenation of DMO. The boron-doped CNT-based catalyst with improved ethanol selectivity and catalytic stability will be helpful in the development of efficient Cu catalysts supported on non-silica materials for selective hydrogenation of DMO to ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.