Abstract

Herein, we report a facile homogeneous urea – assisted hydrothermal approach for the design of CoFe2O4/Co3O4 nano hetrostructure. A variation in Co concentration leads to smartly designed composite material namely CFC-11 and CFC-12 where CFC-12 appreciates the benefits of both CoFe2O4 and Co3O4 nanoparticles. The physico – chemical properties of as developed materials were investigated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron microscopy (XPS) and Raman spectroscopy. The specific surface area and pore size distribution was determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halendo (BJH) respectively. Magnetic measurements via. vibrating sample magnetometer (VSM) demonstrate that saturation magnetization decreases with the incorporation of Co3O4 antiferromagnetic nanoparticles. To explore the utility of as designed nano-hetrostructures as supercapacitor electrodes, we employed cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS) measurements. A high specific capacitance of 761.1 F g−1 at 10 mV s−1, admirable cyclic durability of 92.2% and a low resistance value obtained from impedence measurements was observed for CFC-12. The favorable performance demonstrates the synergistic effect of CoFe2O4 and Co3O4 nanoparticles and thus promise an excellent material for energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.