Abstract

Biochar derived from bamboo was used to support sulfide nanoscale zero-valent iron (S-nZVI@BC) for simultaneous removal of Cd(II) and As (III) from aqueous media. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) characterization confirmed the successful synthesis of the S-nZVI@BC. Adsorption kinetics and isotherms indicated that co-adsorption of Cd(II) and As(III) onto S-nZVI@BC was well represented by pseudo-second-order model (R2Cd(II) = 0.990, R2As(III) = 0.995) and Langmuir model (R2Cd(II) = 0.954, R2As(III) = 0.936). The maximum adsorption was 162.365 and 276.133 mg/g for Cd(II) and As(III), respectively, in a co-adsorption system, which was significantly higher than that in a single adsorption system (103.195 and 223.736 mg/g, respectively). Batch experiments showed that the Cd(II)-to-As(III) concentration ratio significantly affected the co-adsorption with the optimal ratio of 1:2. Ca2+ and Mg2+ significantly inhibited Cd(II) removal. In contrast, phosphate and humic acid significantly inhibited As(III) removal. Electrochemical analysis indicated S-nZVI@BC had a lower corrosion potential and resistance than nZVI@BC, making it more conducive to electron transfer and chemical reaction. Electrostatic adsorption, complexation, co-precipitation, and redox were the primary mechanisms for Cd(II) and As(III) removal. Overall, the present study provides new insights into the synergistic removal of Cd(II) and As(III) by S-nZVI@BC, which is a very promising adsorbent for the effective removal of Cd(II) and As(III) from contaminated wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call