Abstract

Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.

Highlights

  • Forest loss is progressing globally from deforestation associated with land use change [1,2] and tree mortality resulting from climate change [3,4]

  • Model results show that regional forest loss in all experiments leads to global cooling (Fig 2A, 2C and 2D) with the cooling dominated by western North America (wNA) forest loss

  • Increases in Southeastern North America (SENA)’s Gross Primary Productivity (GPP) with Amazon forest loss and the climate mechanisms responsible for these changes are similar to the result of the combined experiment, they do not pass our significance threshold, so we focus on climate mechanisms related to wNA and wNA+Amazon results only

Read more

Summary

Introduction

Forest loss is progressing globally from deforestation associated with land use change [1,2] and tree mortality resulting from climate change [3,4]. Additional support was provided through the National Science foundation EF-1550641 to the University of Washington, EF-1550686 to Michigan State University, EF-1550756 to the University of Arizona, to S.R.S. by the Agnese Nelms Haury Program in Environment and Social Justice at the University of Arizona (haury.arizona.edu), and to J. Computing resources were provided by the Climate Simulation Laboratory at National Center for Atmospheric Research’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call