Abstract

Research on flexible thermoelectric (TE) materials has typically focused on conducting polymers and conducting polymer-based composites. However, achieving TE properties comparable in magnitude to those exhibited by their inorganic counterparts remains a formidable challenge. This study focuses on the synthesis of silver selenide (Ag2Se) nanomaterials using solvothermal methods and demonstrates a significant enhancement in their TE properties through the synergistic dual doping of sulfur and copper. Flexible TE thin films demonstrating excellent flexibility are successfully fabricated using vacuum filtration and hot-pressing techniques. The resulting thin films also exhibited outstanding TE performance, with a high Seebeck coefficient (S=-138.5µVK-1) and electrical conductivity (σ=1.19×105Sm-1). The record power factor of 2296.8µWm-1K-2 at room temperature is primarily attributed to enhanced carrier transport and interfacial energy filtration effects in the composite material. Capitalizing on these excellent TE properties, the maximum power output of flexible TE devices reached 1.13µW with a temperature difference of 28.6K. This study demonstrates the potential of Ag2Se-based TE materials for flexible and efficient energy-harvesting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.