Abstract

Over the past several decades, cryopreservation has been widely used to preserve cells during long term storage, but advances in stem cell therapies, regenerative medicine, and miniaturized cell-based diagnostics and sensors are providing new targets of opportunity for advancing preservation methodologies. The advent of microfluidics-based devices is an interesting case in which the technology has been used to improve preservation processing, but as the devices have evolved to also include cells, tissues, and simulated organs as part of the architecture, the biochip itself is a desirable target for preservation. In this review, we will focus on the synergistic co-development of preservation methods and biochip technologies, while identifying where the challenges and opportunities lie in developing methods to place on-chip biologics on the shelf, ready for use. Emerging studies are demonstrating that the cost of some biochips have been reduced to the extent that they will have high utility in point-of-care settings, especially in low resource environments where diagnostic capabilities are limited. Ice-free low temperature vitrification and anhydrous vitrification technologies will likely emerge as the preferred strategy for long-term preservation of bio-chips. The development of preservation methodologies for partially or fully assembled biochips would enable the widespread distribution of these technologies and enhance their application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call