Abstract

Antimicrobial resistance (AMR) from pathogenic bacterial biofilms has become a global health issue while developing novel antimicrobials is inefficient and costly. Combining existing multiple drugs with enhanced efficacy and/or reduced toxicity may be a promising approach to treat AMR. D-amino acids mixtures coupled with antibiotics can provide new therapies for drug-resistance infection with reduced toxicity by lower drug dosage requirements. However, iterative trial-and-error experiments are not tenable to prioritize credible drug formulations, owing to the extremely large number of possible combinations. Herein, a new avenue is provide to accelerate the exploration of desirable antimicrobial formulations via high-throughput screening and machine learning optimization. Such an intelligent method can navigate the large search space and rapidly identify the D-amino acid mixtures with the highest anti-biofilm efficiency and also the synergisms between D-amino acid mixtures and antibiotics. The optimized drug cocktails exhibit high antimicrobial efficacy while remaining non-toxic, which is demonstrated not only from in vitro assessments but also the first in vivo study using a lung infection mouse model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.