Abstract

Pancreatic ductal adenocarcinoma (PDA) is a highly fatal disease with 5-year survival of ∼8.5%. Nanoplatforms such as nab-paclitaxel and nanoliposomal irinotecan demonstrate superiority and utility in treating different progressions of PDA by prolonging the median overall survival by only a few months. Due to the dense surrounding stroma and the high autophagy in pancreatic cancer, integrin ɑvβ3 targeting, acid environmental sensitive, TR peptide-modified liposomal platforms loaded with combined autophagy inhibiting hydroxychloroquine (HCQ), and cytotoxic paclitaxel (PTX) were designed (TR-PTX/HCQ-Lip) to accomplish the aim of synergistically killing tumor cells while inhibiting stroma fibrosis. The results showed that TR peptide-modified liposomes (TR-Lip) have superior targeting and penetrating effects both in vitro and in vivo. TR-PTX/HCQ-Lip efficiently inhibited autophagy in pancreatic cells and surrounding cancer-associated fibroblasts. The synergistic anti-fibrosis roles were also confirmed both in vitro and in vivo, all of which contributes to the enhanced curative effects of TR-PTX/HCQ-Lip in both heterogenetic and orthotopic pancreatic cancer models. Statement of SignificanceAutophagy plays a significant role in pancreatic ductal adenocarcinoma, especially in activating cancer associated fibroblasts which is also related to collagen generation that promotes the formation of dense stroma, which hinder the cytotoxic drugs to target and kill cancer cells. In this study, we designed integrin ɑvβ3 targeting, acid environmental sensitive liposomal platforms to co-loaded paclitaxel and the autophagy inhibitor hydroxychloroquine. The results showed that the muti-functional liposomes can target to the pancreatic tumor and efficiently kill tumor cells and inhibit stroma fibrosis, thus improve the therapeutic effect in orthotopic pancreatic cancer models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.