Abstract
Network topologies, especially some high-order topologies, are able to furnish cross-linked polymer materials with enhanced properties without altering their chemical composition. However, the fabrication of such topologically intriguing architectures at the macromolecular level and in-depth insights into their structure-property relationship remain a significant challenge. Herein, we relied on synergistic covalent-and-supramolecular polymers (CSPs) as a platform to prepare a range of polymer networks with an interwoven topology. Specifically, through the sequential supramolecular self-assemblies, the covalent polymers (CPs) and metallosupramolecular polymers (MSPs) could be interwoven in our CSPs by [2]pseudorotaxane cross-links. As a result, the obtained CSPs possessed a topological network that could not only promote the synergistic effect between CPs and MSPs to afford mechanically robust yet dynamic materials but also vest polymers with some functions, as manifested by force-induced hierarchical dissociations of supramolecular interactions and superior thermomechanical stability compared to our previously reported CSP systems. Furthermore, our CSPs exhibited tunable mechanical performance toward multiple stimuli including K+ and PPh3, demonstrating abundant stimuli-responsive properties. We hope that these findings could provide novel opportunities toward achieving topological structures at the macromolecular level and also motivate further explorations of polymeric materials via the way of controlling their topological structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.