Abstract

Simple, efficient and accurate controllable systems for materials are becoming more essential, in response to the explosively growing demands in the fields of chemistry and material science. Herein, tailored hydrogels are explored depending on synergistic regulation of pH-responsive chemical networks with an “on/off” function and physical networks with dynamic self-optimized arrangement. Thiol-disulfide exchange reaction endows hydrogels with controlled architectures while hydrogen bond-strengthened 2-ureido-4[1 H ]-pyrimidinone (UPy) moieties contributes a significant increase in mechanical strengths. The integration of that dual cross-linking (DC) network ensures the hydrogels with customized structure and enhanced mechanical property. Such controllably strategy is universally applicable and will open a new avenue to flexibly fabricate desired hybrid hydrogels with distinctive features and functions for their potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.