Abstract

The majority of patients with high grade serous ovarian cancer (HGSOC) develop recurrent disease and chemotherapy resistance. To identify drug combinations that would be effective in treatment of chemotherapy resistant disease, we examined the efficacy of drug combinations that target the three antiapoptotic proteins most commonly expressed in HGSOC-BCL2, BCL-XL, and MCL1. Co-inhibition of BCL2 and BCL-XL (ABT-263) with inhibition of MCL1 (S63845) induces potent synergistic cytotoxicity in multiple HGSOC models. Since this drug combination is predicted to be toxic to patients due to the known clinical morbidities of each drug, we developed layer-by-layer nanoparticles (LbL NPs) that co-encapsulate these inhibitors in order to target HGSOC tumor cells and reduce systemic toxicities. We show that the LbL NPs can be designed to have high association with specific ovarian tumor cell types targeted in these studies, thus enabling a more selective uptake when delivered via intraperitoneal injection. Treatment with these LbL NPs displayed better potency than free drugs in vitro and resulted in near-complete elimination of solid tumor metastases of ovarian cancer xenografts. Thus, these results support the exploration of LbL NPs as a strategy to deliver potent drug combinations to recurrent HGSOC. While these findings are described for co-encapsulation of a BCL2/XL and a MCL1 inhibitor, the modular nature of LbL assembly provides flexibility in the range of therapies that can be incorporated, making LbL NPs an adaptable vehicle for delivery of additional combinations of pathway inhibitors and other oncology drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.