Abstract

The key challenges in aqueous zinc-manganese dioxide batteries (MnO2//Zn) are their poor electrochemical kinetics and stability, which are mainly due to low conductivity and the inevitable dissolution of MnO2. A synergistic combination of a Co-doped σ-MnO2 electrode (Co-MnO2) and a Co(CH3COO)2•4H2O (CoAc) electrolyte additive is here developed to design a high-performance aqueous MnO2//Zn battery (denoted as a Co-MnO2//Zn battery with CoAc). The introduction of Co ions (Co3+/Co2+) into the σ-MnO2 electrode is achieved via a facile one-step electrodeposition method. Benefitting from the synergistic coupling effect of the Co-MnO2 electrode and the CoAc electrolyte additive, the fabricated Co-MnO2//Zn battery with CoAc shows a commendable discharge capacity of 313.8 mAh g−1 at 0.5 A g−1, excellent rate performance, excellent durability over 1000 cycles (∼ 92% capacity retention at 1.0 A g−1) and admirable energy density (439.3 Wh kg−1), which is a significant improvement compared with an un-doped σ-MnO2//Zn battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.