Abstract

A novel heterogeneous sonophotolytic goethite/oxalate Fenton-like (SP-FL) system was developed in this study. Compared to the corresponding photochemical Fenton-like (P-FL) system and sonochemical Fenton-like system (S-FL) system, it was found that the SP-FL system could achieve synergistic degradation of antibiotic sulfamethazine (SMZ). A synergy factor of 2.2 based on pseudo-first-order degradation rate constant (kobs) was observed, along with great improvements in organic mineralization and wastewater detoxification. Examining the evolution of dissolved iron species and reactive oxygen species (H2O2 and OH) in the three systems revealed that the SMZ degradation strongly relied on the “in-situ” photochemical generation of H2O2 and fast regeneration of dissolved Fe(II) species. Identification of the organic intermediates and released inorganic ions suggested that the cleavage of SN bond in the SMZ molecule was dominant under OH attacking. The important synergistic role of ultrasound (US) in promoting SMZ degradation was proposed. Herein US could affect the system at multi-folds: (1) accelerating the goethite-chelating dissolution by reducing mass transfer barriers, (2) enhancing the radical reactions in the bulk solution with sonochemical cavitation effect, and (3) possible direct hydrolysis of amine intermediates inside the cavitation bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.