Abstract
Biomass such as ethanol and glycerol has emerged as an alternative feedstock for hydrogen (H2) production in recent years. Ethanol, which is high in H2, can easily be derived from renewable biomass sources, whereas; glycerol is a by-product of biodiesel expected to be surplus in the coming years. Several catalytic reforming routes involving biomass such as steam, CO2, auto thermal, partial oxidation and aqueous-phase reforming can produce syngas or H2. Bimetallic catalysis is one of the potential solutions to reduce carbon formation and catalysts deactivation in reforming processes since it can produce more stable catalysts from the synergistic effect of the combined metals. There are many reviews on catalyst designs and reaction pathways reported in the literature; nevertheless, comparative literature is lacking on the metal configuration of bimetallic catalyst in biomass reforming particularly for ethanol and glycerol reforming reactions. Therefore, studies linked with the synergistic effects of various bi-metal combinations of catalysts used in biomass reforming processes have been reviewed in the paper. Moreover, the study provides data for the application of bimetallic catalyst for industrial biomass processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.