Abstract

Attraction of many gravid female herbivore insects to suitable host plants is mediated largely by olfactory cues. Behaviorally, synergism among odor mixtures constituents underlies this attraction in some systems. Yet, the representation of synergistic odor-mixture effects is unknown in the antennal lobe, the first processing center for olfactory information in insect brains. Using both behavioral and physiological data we demonstrate that in the oriental fruit moth, Cydia (Grapholita) molesta, a minor constituent of a plant-derived synthetic mixture plays a key role in behavioral discrimination and in neural representation of mixtures. Behaviorally, minute amounts of benzonitrile added to an unattractive 4-compound mixture resulted in a bioactive 5-compound mixture that was as attractive to mated female moths as the natural blend. Physiologically, the bioactive benzonitrile-containing mixture elicited strong activation of one additional, new type of glomerulus that showed specific synergisms for this mixture. The specific pattern of activated glomeruli elicited by the addition of benzonitrile demonstrates a physiological correlate to the behaviorally observed synergism, and emphasizes the key role of a minor component of a complex mixture. While minor constituents of mixtures are often overlooked, they may, as conclusively documented here, be determinant for successful recognition and behavioral discrimination of suitable host plants by herbivore insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call