Abstract
Piezo-photocatalysis combines photocatalysis and piezoelectric effects to enhance catalytic efficiency by creating an internal electric field in the photocatalyst, improving carrier separation and overall performance. This study presents a high-performance piezo-photocatalyst for efficient dye degradation using a synergistic barium titanate (BTO)-MXene composite. The composite was synthesized via a facile method, combining the unique properties of BTO nanoparticles with the high conductivity of MXene. The structural and morphological analysis confirmed the successful formation of the composite, with well-dispersed BTO nanoparticles on the MXene surface. The piezo-photocatalytic activity of the composite was evaluated using a typical dye solution (Rhodamine B: RhB) under ultraviolet irradiation and mechanical agitation. The results revealed a remarkable enhancement in dye degradation (90 % in 15 min for piezo-photocatalysis) compared to individual stimuli (58.2 % for photocatalysis and 95.8 % in 90 min for piezocatalysis), highlighting the synergistic effects between BTO and MXene. The enhanced catalytic performance was attributed to the efficient charge separation and transfer facilitated by the composite’s structure, leading to increased reactive species generation and dye molecule degradation. Furthermore, the composite exhibited excellent stability and reusability, showcasing its potential for practical applications in wastewater treatment. Overall, this work represents a promising strategy for designing high-performance synergistic catalysts, addressing the pressing need for sustainable solutions in environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.