Abstract

Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.