Abstract

We have designed two metal–organic frameworks (MOFs) to efficiently convert X-ray to visible-light luminescence. The MOFs are constructed from M6(μ3-O)4(μ3-OH)4(carboxylate)12 (M = Hf or Zr) secondary building units (SBUs) and anthracene-based dicarboxylate bridging ligands. The high atomic number of Zr and Hf in the SBUs serves as effective X-ray antenna by absorbing X-ray photons and converting them to fast electrons through the photoelectric effect. The generated electrons then excite multiple anthracene-based emitters in the MOF through inelastic scattering, leading to efficient generation of detectable photons in the visible spectrum. The MOF materials thus serve as efficient X-ray scintillators via synergistic X-ray absorption by the metal-cluster SBUs and optical emission by the bridging ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call