Abstract

Innovation in green, convenient, and sustainable antimicrobial packaging materials for food is an inevitable trend to address global food waste challenges caused by microbial contamination. In this study, we developed a biogenic, hydrophobic, and antimicrobial protein network coating for food packaging. Experimental results show that disulfide bond breakage can induce the self-assembly of bovine albumin (BSA) into protein networks driven by hydrophobic interactions, and chitosan oligosaccharide (COS) with antimicrobial activity can be stably bound in this network by electrostatic interactions. The inherent antimicrobial activity of COS and the numerous hydrophobic regions on the surface of the BSA-network give the BSA@COS-network significant in vitro antimicrobial ability. More importantly, the BSA@COS-network coating can prolong the onset of spoilage of strawberries in various packaging materials by nearly 3-fold in storage. This study shows how surface functionalization via protein self-assembly is integrated with the biological functioning of natural antibacterial activity for advanced food packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.