Abstract

The increasing emergence of antibiotics resistance is of global concern. Finding novel antimicrobial agents and strategies based on synergistic combinations are essential to combat resistant bacteria. We evaluated the activity of garvicin KS, a new bacteriocin produced by Lactococcus garvieae. The bacteriocin has a broad inhibitory spectrum, inhibiting members of all the 19 species of Gram-positive bacteria tested. Unlike other bacteriocins from Gram-positive bacteria, garvicin KS inhibits Acinetobacter but not other Gram-negative bacteria. Garvicin KS was tested in combination with other antimicrobial agents. We demonstrated synergy with polymyxin B against Acinetobacter spp. and Escherichia coli, but not against Pseudomonas aeruginosa. Similar effects were seen with mixtures of nisin and polymyxin B. The synergistic mixtures of all three components caused rapid killing and full eradication of Acinetobacter spp. and E. coli. In addition, garvicin KS and nisin also acted synergistically against Staphylococcus aureus, indicating different in modes of action between the two bacteriocins. Both bacteriocins showed synergy with farnesol, and the combination of low concentrations of garvicin KS, nisin and farnesol caused rapid eradication of all the S. aureus strains tested. Its broad inhibitory spectrum, rapid killing, and synergy with other antimicrobials makes garvicin KS a promising antimicrobial.

Highlights

  • Infections caused by antibiotics resistant pathogens from both Gram-positive and Gram-negative bacteria have become of global concern

  • The bacteriocins of lactic acid bacteria are of particular interest, since many are being used in foods and their bacteriocins may contribute to enhance shelf life and food safety

  • Garvicin KS is a new bacteriocin comprised of three similar peptides of 32–34 amino acids [24]

Read more

Summary

Introduction

Infections caused by antibiotics resistant pathogens from both Gram-positive and Gram-negative bacteria have become of global concern. Antimicrobial peptides represent a source of unexplored compounds with a potential to kill antibiotic resistant bacteria [27]. Their modes of action are not fully understood, but are different from the commonly used antibiotics. The antimicrobial peptides produced by bacteria are known as bacteriocins. Bacteriocins usually have narrow inhibitory spectra, but from Gram-positive bacteria several bacteriocins with wide inhibitory spectra are known. The bacteriocins of lactic acid bacteria are of particular interest, since many are being used in foods and their bacteriocins may contribute to enhance shelf life and food safety. These bacteriocins have been grouped into class I, lantibiotics containing modified residues, and class II without modified residues [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call