Abstract
Resistant bacteria are emerging as a critical problem in the treatment of bacterial infections by neutralizing antibiotic activity. The development of new traditional mechanisms of antibiotics is not the optimal solution. A more reasonable approach may be to use relatively safe, plant-based compounds in combination with conventional antibiotics in an effort to increase their efficacy or restore their activity against resistant bacteria. We present our study of mixing Ricini Semen extract, or its constituent fatty acids, with oxacillin and testing the effects of each on the growth of methicillin-resistant Staphylococcus aureus. Changes in the cell membrane fluidity of methicillin-resistant S. aureus were found to be a major component of the mechanism of synergistic antibiotic activity of Ricini Semen extract and its constituent fatty acids. In our model, changes in cellular membrane fluidity disrupted the normal function of bacterial signaling membrane proteins BlaR1 and MecR1, which are known to detect oxacillin, and resulted in the incomplete expression of penicillin-binding proteins 2a and β-lactamase. Utilizing the mechanism presented in this study presents the possibility of developing a method for treating antibiotic-resistant bacteria using traditional antibiotics with plant-based compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.