Abstract

ZnO nanoparticles (NPs) were prepared using the hydrothermal method, and then doped with Ag or Au NPs, yielding ZnO NPs, ZnO–Ag NPs, and ZnO–Au NPs, which were characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The synthesized nanomaterials were analyzed for their antibacterial properties against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella typhi) by qualitative and quantitative assays. Minimal inhibitory concentration (MIC) results show that growth control is more effective for Gram-positive bacteria than for Gram-negative bacteria. Although ZnO NPs and Ag NPs are antibacterial agents, the lowest bacterial growth was observed for ZnO–Ag NPs, showing that the doped Ag NPs greatly facilitate the interaction between the microbial cells and the NP surface. Though the same antibacterial effect was expected for ZnO–Au NPs, the inhibition activity was very close to that of ZnO NPs. The order of bacterial cell growth inhibition was ZnO–Ag NPs >> ZnO–Au NPs ~ ZnO NPs >> ZnO powder. We also analyzed the morphology of bacterial cells treated with NPs by scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call