Abstract

Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the Chinese medicinal herb Stephaniae tetrandrae, has a long history in Chinese clinical applications to treat diverse diseases. Tetrandrine induced apoptosis or, at low concentrations, autophagy of human hepatocellular carcinoma cells. Here we have tested the effects of inhibitors of autophagy such as chloroquine, on the response to low concentrations of tetrandrine in cancer cells. Cultures of several cancer cell lines, including Huh7, U251, HCT116 and A549 cells, were exposed to tetrandrine, chloroquine or a combination of these compounds. Cell viability and content of reactive oxygen species (ROS) were measured and synergy assessed by calculation of the combination index. Western blot and RT-PCR assays were also used along with fluorescence microscopy and histochemical techniques. Combinations of tetrandrine and chloroquine were more cytotoxic than the same concentrations used separately and these effects showed synergy. Such effects involved increased ROS generation and were dependent on caspase-3 but independent of Akt activity. Blockade of tetrandrine-induced autophagy with 3-methyladenine or bafilomycin-A1 induced apoptosis in cancer cells. Lack of p21 protein (p21(-/-) HCT116 cells) increased sensitivity to the apoptotic effects of the combination of tetrandrine and chloroquine. In a tumour xenograft model in mice, combined treatment with tetrandrine and chloroquine induced ROS accumulation and cell apoptosis, and decreased tumour growth. The combinations of tetrandrine and chloroquine exhibited synergistic anti-tumour activity, in vitro and in vivo. Our results suggest a novel therapeutic strategy for tumour treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call