Abstract
Due to the abuse of antibiotics, antimicrobial resistance is rapidly emerging and becoming a major global risk for public health. Thus, there is an urgent need for reducing the use of antibiotics, finding novel treatment approaches, and developing controllable release systems. In this work, a dual synergistic antibacterial platform with on-demand release ability based on silver nanoparticles (AgNPs) and antimicrobial peptide (AMP) coloaded porous silicon (PSi) was developed. The combination of AgNPs and AMPs (Tet-213, KRWWKWWRRC) exhibited an excellent synergistic antibacterial effect. As a carrier, porous silicon can efficiently load AgNPs and AMP under mild conditions and give the platform an on-demand release ability and a synergistic release effect. The AgNPs and AMP coloaded porous silicon microparticles (AgNPs-AMP@PSiMPs) exhibited an acid pH and reactive oxygen species (ROS)-stimulated release of silver ions (Ag+) and AMPs under bacterial infection conditions because of oxidation and desorption effects. Moreover, the release of the bactericide could be promoted by each other due to the interplay between AgNPs and Tet-213. In vitro antibacterial tests demonstrated that AgNPs-AMP@PSiMPs inherited the intrinsic properties and synergistic antibacterial efficiency of both bactericides. In addition, wound dressing loaded with AgNPs-AMP@PSiMPs showed outstanding in vivo bacteria-killing activity, accelerating wound-healing, and low biotoxicity in aStaphylococcus aureus-infected rat wound model. The present work demonstrated that PSiMPS might be an efficient platform for loading the antibiotic-free bactericide, which could synergistically and on-demand release to fight wound infection and promote wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.