Abstract

BackgroundHydrostatic pressure (HP) is a significant factor in the function of many tissues, including cartilage, knee meniscus, temporomandibular joint disc, intervertebral disc, bone, bladder, and vasculature. Though studies have been performed in assessing the role of HP in tissue biochemistry, to the best of our knowledge, no studies have demonstrated enhanced mechanical properties from HP application in any tissue.Methodology/Principal FindingsThe objective of this study was to determine the effects of hydrostatic pressure (HP), with and without growth factors, on the biomechanical and biochemical properties of engineered articular cartilage constructs, using a two-phased approach. In phase I, a 3×3 full-factorial design of HP magnitude (1, 5, 10 MPa) and frequency (0, 0.1, 1 Hz) was used, and the best two treatments were selected for use in phase II. Static HP at 5 MPa and 10 MPa resulted in significant 95% and 96% increases, respectively, in aggregate modulus (HA), with corresponding increases in GAG content. These regimens also resulted in significant 101% and 92% increases in Young's modulus (EY), with corresponding increases in collagen content. Phase II employed a 3×3 full-factorial design of HP (no HP, 5 MPa static, 10 MPa static) and growth factor application (no GF, BMP-2+IGF-I, TGF-β1). The combination of 10 MPa static HP and TGF-β1 treatment had an additive effect on both HA and EY, as well as a synergistic effect on collagen content. This group demonstrated a 164% increase in HA, a 231% increase in EY, an 85% increase in GAG/wet weight (WW), and a 173% increase in collagen/WW, relative to control.Conclusions/SignificanceTo our knowledge, this is the first study to demonstrate increases in the biomechanical properties of tissue from pure HP application, using a cartilage model. Furthermore, it is the only study to demonstrate additive or synergistic effects between HP and growth factors on tissue functional properties. These findings are exciting as coupling HP stimulation with growth factor application has allowed for the formation of tissue engineered constructs with biomechanical and biochemical properties spanning native tissue values.

Highlights

  • Hydrostatic pressure plays an important role in the mechanoregulation of several tissues; including cartilage [1,2,3,4,5,6,7,8], knee meniscus [9], temporomandibular joint disc [10,11], intervertebral disc [11,12,13], bone [14], bladder [15], and vasculature [16]

  • The combination of 10 MPa static Hydrostatic pressure (HP) and TGF-b1 treatment had an additive effect on both HA and EY, as well as a synergistic effect on collagen content

  • Since 5 MPa and 10 MPa static HP were the only regimens to significantly increase the compressive and tensile stiffness as well as GAG/wet weight (WW) and collagen/WW, these two regimens were selected for use in phase II

Read more

Summary

Introduction

Hydrostatic pressure plays an important role in the mechanoregulation of several tissues; including cartilage [1,2,3,4,5,6,7,8], knee meniscus [9], temporomandibular joint disc [10,11], intervertebral disc [11,12,13], bone [14], bladder [15], and vasculature [16]. In these studies, HP generally led to increased extracellular matrix (ECM) production. Though studies have been performed in assessing the role of HP in tissue biochemistry, to the best of our knowledge, no studies have demonstrated enhanced mechanical properties from HP application in any tissue

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.