Abstract

Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call