Abstract

Arthropod-specific juvenile hormones control numerous essential functions in development and reproduction. In the dengue-fever mosquito Aedes aegypti, in addition to its role in immature stages, juvenile hormone III (JH) governs post-eclosion (PE) development in adult females, a phase required for competence acquisition for blood feeding and subsequent egg maturation. During PE, JH through its receptor Methoprene-tolerant (Met) regulate the expression of many genes, causing either activation or repression. Met-mediated gene repression is indirect, requiring involvement of intermediate repressors. Hairy, which functions downstream of Met in the JH gene-repression hierarchy, is one such factor. Krüppel-homolog 1, a zinc-finger transcriptional factor, is directly regulated by Met and has been implicated in both activation and repression of JH-regulated genes. However, the interaction between Hairy and Kr-h1 in the JH-repression hierarchy is not well understood. Our RNAseq-based transcriptomic analysis of the Kr-h1-depleted mosquito fat body revealed that 92% of Kr-h1 repressed genes are also repressed by Met, supporting the existence of a hierarchy between Met and Kr-h1 as previously demonstrated in various insects. Notably, 130 genes are co-repressed by both Kr-h1 and Hairy, indicating regulatory complexity of the JH-mediated PE gene repression. A mosquito Kr-h1 binding site in genes co-regulated by this factor and Hairy was identified computationally. Moreover, this was validated using electrophoretic mobility shift assays. A complete phenocopy of the effect of Met RNAi depletion on target genes could only be observed after Kr-h1 and Hairy double RNAi knockdown, suggesting a synergistic action between these two factors in target gene repression. This was confirmed using a cell-culture-based luciferase reporter assay. Taken together, our results indicate that Hairy and Kr-h1 not only function as intermediate downstream factors, but also act together in a synergistic fashion in the JH/Met gene repression hierarchy.

Highlights

  • Arthropod-specific juvenile hormones (JHs) are key regulators of a large array of physiological processes, including growth, metamorphosis and reproduction [1, 2]

  • JH acting through its receptor Methoprene-tolerant (Met) regulates the expression of large gene cohorts

  • JH mediated gene repression, unlike activation that is directly mediated by Met, is indirect and requires intermediate transcriptional repressors Hairy and Kruppel-homolog 1 (Krh1)

Read more

Summary

Introduction

Arthropod-specific juvenile hormones (JHs) are key regulators of a large array of physiological processes, including growth, metamorphosis and reproduction [1, 2]. Recent studies have indicated the existence of a not-yet fully characterized membrane JH receptor that is responsible for Met phosphorylation, a necessary step for the activity of the JH receptor complex [20, 21]. This mode of action involving JH has been confirmed for several genes, including early trypsin (ET), regulator of ribosomal synthesis 1 (RRS1), Hairy, and Krüppel-homolog 1 (Kr-h1) [2, 10, 12, 16, 17, 22, 23]. Some targets of the JH signaling pathway, such as Hairy and Kr-h1, are transcription factors (TFs) that in turn can regulate the expression of downstream genes [2, 22, 23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call