Abstract

Accumulating evidence suggests that an instant exposure to particulate matter (PM) may elevate blood pressure (BP), where cell-adhesion regulatory genes may be involved in the interplay. However, few studies to date critically examined their interaction, and it remained unclear whether these genes modified the association. To assess the association between instant PM exposure and BP, and to examine whether single-nucleotide polymorphisms (SNPs) mapped in four cell adhesion regulatory genes modify the relationship, a cross-sectional study was performed, based on the baseline of an ongoing family-based cohort in Beijing, China. A total of 4418 persons from 2089 families in Northern China were included in the analysis. Four tagged SNPs in cell adhesion regulatory genes were selected among ZFHX3, CXCL12, RASGRP1 and MIR146A. A generalized additive model (GAM) with a Gaussian link was adopted to estimate the change in blood pressure after instant PM2.5 or PM10 exposure. A cross-product term of PM2.5/PM10 and genotype was incorporated into the GAM model to test for interaction. The study observed that an instant exposure to either PM2.5 or PM10 was found to be associated with elevated systolic blood pressure (SBP). On average, a 10 μg/m3 increase in instant exposure to PM2.5 and PM10 concentration corresponded to 0.140% (95% CI: 0.014%–0.265%, P = 0.029) and 0.173% (95% CI: 0.080%–0.266%, P < 0.001) higher SBP. However, diastolic blood pressure (DBP) was not elevated as the PM2.5 or PM10 concentration increased (P > 0.05). A synergetic interaction on SBP was observed between SNPs in four cell adhesion regulatory genes (rs2910164 in MIR146A, rs2297630 in CXCL12, rs7403531 in RASGRP1, and rs7193343 in ZFHX3) and instant PM2.5 exposure (Pfor interaction <0.05). Briefly, as carriers of risk alleles in each of these four genes increased, an enhanced association was found between instant PM2.5 exposure and SBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.