Abstract

Transcriptional regulation of the c-fos proto-oncogene requires the serum response element (SRE) which is complexed by a multi-protein assembly observed both in vitro and in vivo. Two protein factors, p67SRF and p62TCF (previously called p62), are required to interact with the SRE for efficient induction of c-fos by serum. By quantitative band shift electrophoresis we measure at least a 50-fold increase in SRE affinity for p67SRF/p62TCF over p67SRF alone. Stoichiometrically we determine that the ternary complex with p62TCF involves p67SRF in dimeric form. We demonstrate that p67SRF is a glycosylated nuclear transcription factor carrying terminal N-acetylglucosamine (GlcNAc) as a post-translational modification. A proteolytic limit digestion product, approximately 13 kd in size, was generated from the p67SRF-SRE complex. This p67SRF-core domain binds SRE, can dimerize with p67SRF and is still able to form a ternary complex with p62TCF. Therefore, three functional activities can be ascribed to this small p67SRF-core domain: specific DNA binding, dimerization and interaction with p62TCF. We demonstrate that these functions map within the p67SRF core fragment containing the region between amino acids 93 and 222.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.