Abstract

The ordered cocrystallization of nanoparticles into binary superlattices enables close contact of nanocrystals with distinct physical properties, providing a route to 'metamaterials' design. Here we present the first electronic measurements of multicomponent nanocrystal solids composed of PbTe and Ag(2)Te, demonstrating synergistic effects leading to enhanced p-type conductivity. First, syntheses of size-tuneable PbTe and Ag(2)Te nanocrystals are presented, along with deposition as thin-film nanocrystal solids, whose electronic transport properties are characterized. Next, assembly of PbTe and Ag(2)Te nanocrystals into AB binary nanocrystal superlattices is demonstrated. Furthermore, binary composites of varying PbTe-Ag(2)Te stoichiometry (1:1 and 5:1) are prepared and electronically characterized. These composites show strongly enhanced (conductance approximately 100-fold increased in 1:1 composites over the sum of individual conductances of single-component PbTe and Ag(2)Te films) p-type electronic conductivity. This observation, consistent with the role of Ag(2)Te as a p-type dopant in bulk PbTe, demonstrates that nanocrystals can behave as dopants in nanostructured assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.