Abstract
We have been studying the mitogen hyporesponsiveness and immunosuppression induced in chronic murine graft-vs.-host disease (GVHD) induced across minor histocompatibility (MiHA) barriers. In this system, donor and recipient mice are major histocompatibility complex- and mls-identical, and are nonreactive in primary mixed leukocyte reactions. Spleen cells from B10.D2 (H-2d, mls b) mice were injected into irradiated (600 rad) BALB/c (H-2d, mls b) recipients. Recipient spleen cells are hyporesponsive to mitogens, and contain natural suppressor (NS) cells. We investigated the cellular requirements for both the in vivo induction and the in vitro expression of this GVH suppression. T cells are required in the graft, but they are not sufficient to induce suppression, and a non-T cell population is also required for maximum induction in vivo. T cells are also required for the maximum expression of NS cell suppressive ability in vitro. Early in the course of GVH, the suppressor cells are able to suppress the Con A and LPS response of all mouse strains tested (except for the relative difficulty in suppressing the B10.D2 LPS response). Later, they become almost completely unable to suppress the B10.D2 LPS response; while still being able to suppress the Con A and LPS response of all other strains tested (including the B10.D2 Con A response). This inability to suppress a B10.D2 LPS response can be brought back to almost complete suppression by the addition of concanavalin A supernatant (CAS). We present a hypothesis to explain what may be a common mechanism for GVH-induced suppression, total lymphoid irradiation-induced suppression, and neonatal tolerance. These situations all include rapidly proliferating lymphohematopoietic stem cell populations, and also have large numbers of NS cells. NS cells can suppress proliferating lymphoid populations, and their development and activity are greatly enhanced by T cell signals such as are supplied by donor T cells in chronic GVHD. Thus, NS cells may feed back on and downregulate self-reactive T cells or T cells responding to introduced foreign antigens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.