Abstract

Interrelations between ouabain, a Na+-K+ ATPase inhibitor, and monensin, a Na+ ionophore, on noradrenaline liberation and contractile activity were evaluated in the guinea-pig vas deferens. Monensin (1 microM) per se elicited a small contraction of the tissue. However, amplitude and time to the peak of large and sustained contractions evoked by 10 microM ouabain were potentiated and markedly shortened, respectively, by monensin. Contractions elicited by ouabain with or without monensin were prevented by 3 microM phentolamine or by pretreatment with reserpine. Contractions evoked by K+-free solution were augmented by monensin. In an HPLC study, noradrenaline outflow from the vas deferens was moderately and considerably increased by monensin (10 microM) and ouabain (100 microM), respectively. The ouabain-evoked output of noradrenaline was enhanced in the presence of monensin and the time course for maximum noradrenaline release was shortened, as was the contractile activity. This enhanced outflow after ouabain plus monensin was reserpine sensitive but not tetrodotoxin sensitive. Furthermore, this noradrenaline outflow was roughly halved in Na+-deficient medium, but was unaltered in Ca2+-free medium. These findings suggest that the synergistic effect of ouabain and monensin on noradrenaline liberation from the guinea-pig vas deferens may be due to an elevation of cytoplasmic Ca2+ concentrations, presumably resulting from a stimulation of intracellular Na+-Ca2+ exchange system, but not enhanced Ca2+ entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.