Abstract

The synergism in the glass-transition temperature (Tg) of ternary systems based on benzoxazine (B), epoxy (E), and phenolic (P) resins is reported. The systems show the maximum Tg up to about 180 °C in BEP541 (B/E/P 5 5/4/1). Adding a small fraction of phenolic resin enhances the crosslink density and, therefore, the Tg in the copolymers of benzoxazine and epoxy resins. To obtain the ultimate Tg in the ternary systems, 6 -10 wt % phenolic resin is needed. The molecular rigidity from benzoxazine and the improved crosslink density from epoxy contribute to the synergistic behavior. The mechanical relaxation spectra of the fully cured ternary systems in a temperature range of 2140 to 350 °C show four types of relaxation transitions: g transition at 280 to 260 °C, b transition at 60 - 80 °C, a1 transition at 135-190 °C, and a2 transition at 290 -300 °C. The partially cured specimens show an additional loss peak that is frequency-independent as a result of the further curing process of the materials. The ternary systems have a potential use as electronic packaging molding compounds as well as other highly filled systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1687-1698, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.