Abstract

Present research work describes the issues associated with slurry transportation systems in thermal power plants. It not only explores the importance of such ash handling systems but also embarks upon a step-by-step procedure to optimise slurry contents, without ignoring flow process parameters like velocity and pipe diameter to ensure least possible drop in the flow pressure, along the length of pipe. After analysing the research gaps, a strategic methodology based on the philosophies of mixture design of experiments (DoE) and computational flow dynamics (CFD) was suggested. Experiments were designed and performed in a balanced orthogonal matrix, before simulating through CFD. A deviation of mere 8% (approximately) was found in the end results, and hence an average drop in pressure from 3176 to 1252 KPa was unleashed, in the first attempt itself. The rheological properties (like pH value or settling properties) of slurry were assumed to be in required ranges and their relative impacts on critical flow metrics of slurry transportation system were not studied. The present study used an integrated approach to study the flow and further proved its authenticity by implementing it in an Indian thermal power plant successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.