Abstract
This paper is directed towards describing the striking similarities and synergies between cloud and fog nodes that constitute the cloud-Jog-thing [Fog Network] architecture proposed for 5G networks and the human brain-spinal cord-nerve network model. On the one hand, the central nervous system can be better modeled considering the duality with Fog Networks, and, on the other hand, novel algorithms/protocols inspired from the central nervous system can be developed for throughput and latency performance improvement in Fog Networks. Designing and managing large-scale Fog Networks using stochastic geometry and machine learning is applied to determine the optimum number of fog nodes and their locations that optimize throughput and latency for 5G networks. Having observed the close relation between the Fog Networks and the spinal cord, these results may be adapted to increase understanding of the role of spinal cord plasticity in learning and ultimately suggest new means of treating central nervous system disorders associated with the spinal cord plasticity. Inspired by the cooperation between the brain and the spinal cord, a modified coded caching policy is proposed for Fog Networks, that is, the files to be stored at the fog nodes are determined as a result of continuous information flow between cloud and fog nodes through the latent variables assigned to files.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.